Материал, очищающий водоемы от тяжелых металлов и блокирующий их возврат в среду, представили ученые Южно-Уральского государственного университета (ЮУрГУ). Работу сорбента уже проверили на пробах вод, загрязненных из-за деятельности реально действующего предприятия, и добились положительного результата. Механизм сорбции и влияние материала-блокатора на среду описаны в публикации в высокорейтинговом журнале «Nanomaterials» (Q1).
Новый тип материалов – блокаторы – создают ученые Южно-Уральского государственного университета, работающие над сорбентами для очистки воды. Загрязнение водоемов тяжелыми металлами – острая проблема, существующая во всех промышленных регионах, к которым относится и Челябинская область. Устранение таких последствий работы предприятий металлургического и машиностроительного комплекса – одна из задач, над решением которой работают ученые ЮУрГУ в рамках стратегического проекта вуза «Фундаментальные основы синтеза и эксплуатации перспективных материалов» программы «Приоритет 2030».
Материалы-блокаторы отличаются усиленным эффектом блокирования катионов тяжелых металлов: на их поверхности есть наноцентры, способные обменивать катионы и анионы кристаллической решетки на растворенные в воде или содержащиеся в грунте загрязнители окружающей среды.
Принципиальное отличие блокаторов от других материалов, использующихся для сорбции, – эффект саморегуляции и декарбонизации, объяснила кандидат технических наук, доцент кафедры «Материаловедение и физико-химия материалов» Татьяна Лонзингер:
«После окончания процесса поглощения ионов загрязнителей в саморегулирующейся блокирующей системе начинается процесс образования защитного поверхностного слоя с участием углекислого газа атмосферы, состоящего из карбонатов сложного состава, которые покрывают поверхность материала и превращают систему в экологически безопасный объект, на котором развиваются простейшие формы растительности».
Сырьем для блокаторов стали экологически чистые природные материалы. Изучив физико-химические свойства их компонентов, ученые установили оптимальный химический состав, соотношение фазовых составляющих, прочностные характеристики элементов и количество активных наноцентров. Так, например, удалось выяснить: для перехода тяжелых металлов, растворенных в водоемах, в твердую фазу в структуре блокатора необходимо наличие твердого раствора, способного к катионному обмену.
Ученые построили теоретическую модель, на основании которой синтезировали лабораторные и опытные образцы материалов. Их испытали на модельных растворах и подотвальных и сточных водах предприятий Уральской горно-металлургической компании (УГМК), а также на грунтах с техногенными загрязнениями.
На фото: испытание сорбционных свойств материала-блокатора
Согласно эксперименту, степень удаления катионов церия (имитаторов радионуклидов) из высококонцентрированного модельного раствора достигает 100% через 8 суток контакта с материалом-блокатором, меди – 100%, никеля – 90,3%, цинка – 96.31%. Железо полностью удаляется за 4 дня.
В пробах УГМК после контакта с материалом-блокатором уже через 7 дней в 62,5 раза снизилась концентрация мышьяка, в 30 раз – кадмия, в 125 – меди, в 247 – железа, в 590 – марганца, в 7,5 – никеля и в 674 – цинка.
«Рентгенофазовым анализом установлено, что основными компонентами синтезированного материала-блокатора являются магниево-кальциевые силикаты системы MgO-CaO-SiO2, окерманит (2CaO·MgO·2SiO2), монтичеллит (CaO·MgO·SiO2) и мервинит (3CaO·MgO·2SiO2). Присутствие материала-блокатора приводит к прекращению перехода тяжёлых металлов из грунта в воду. Через 2 недели в составе водной вытяжки из грунта в присутствии материала-блокатора исчезают мышьяк, кадмий, кобальт, никель, свинец. Через три месяца контакта с материалом-блокатором на мёртвом грунте появляются простейшие жизненные формы, начинается процесс восстановления разрушенной окружающей среды», – добавила Татьяна Лонзингер.
Результаты исследований показывают, что материалы-блокаторы могут использоваться на практике. Они одновременно снижают концентрацию всех растворенных в воде тяжелых металлов, несмотря на диапазон их концентраций, который отличается в пробах с сильным загрязнением в десятки раз. Совместные работы с УГМК по этой теме начинаются в 2022 году.
Южно-Уральский государственный университет – это университет цифровых трансформаций, где ведутся инновационные исследования по большинству приоритетных направлений развития науки и техники. В соответствии со стратегией научно-технологического развития РФ университет сфокусирован на развитии крупных научных междисциплинарных проектов в области цифровой индустрии, материаловедения и экологии. В Год науки и технологий ЮУрГУ победил в конкурсе по программе «Приоритет 2030». Вуз выполняет функции регионального проектного офиса Уральского межрегионального научно-образовательного центра мирового уровня (УМНОЦ).
Читайте нас: