ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранится в системе мектронного документооборога Южно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Иванов М. А. Пользователь: Учаногова Прав подписания: 03 10 2024

М. А. Иванов

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.24 Автоматизация и роботизация технологических процессов для направления 15.03.01 Машиностроение уровень Бакалавриат форма обучения очная кафедра-разработчик Электропривод, мехатроника и электромеханика

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 15.03.01 Машиностроение, утверждённым приказом Минобрнауки от 09.08.2021 № 727

Зав.кафедрой разработчика, д.техн.н., проф.

Разработчик программы, к.техн.н., старший преподаватель

М. А. Григорьев

Электронный документ, подписанный ПЭП, хранится в системе электронного документоборота образовательного тосударственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП муз выдант. Балденнов А. А. А. Альзователь: baldenkowas та годинския: 30 об 20 204

А. А. Балденков

1. Цели и задачи дисциплины

Целью освоения дисциплины является приобретение студентами практических знаний и умений в самостоятельном решении задач проектирования и технического обслуживания автоматизированных систем управления технологических процессов. Основной задачей дисциплины является формирование представлений о технологических процессах и наработки навыков решения задач автоматизации, а так же понимание о текущем состоянии автоматизированных систем управления.

Краткое содержание дисциплины

В курсе "Автоматизация и роботизация технологических процессов" рассматриваются наиболее распространенные автоматизированные технологические комплексы, используемые в промышленном производстве, что отражает современный подход к автоматизации машин и механизмов, взаимосвязанных технологическим процессом. В процессе освоения дисциплины практические навыки будут формироваться в форме выполнения практических и лабораторных работ. Вид промежуточной аттестации в семестре - зачет.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: Структуру интегрированных систем
	управления производством, основные
	характеристики каждого уровня архитектуры
	АСУ; основные технологические процессы;
	особенности систем числового программного
	управления; принципы автоматизации процесса
	подготовки управляющих программ;
	автоматизированные технологические комплексы
	Умеет: Настраивать системы управления и
	обработки информации, управляющие средства и
ОПК-4 Способен понимать принципы работы	комплексы; осуществлять их регламентное
современных информационных технологий и	эксплуатационное обслуживание с
использовать их для решения задач	использованием соответствующих
профессиональной деятельности	инструментальных средств; оптимизировать
	многомерные линейные объекты в статике;
	использовать компьютерные CAD/CAM системы
	для автоматизации процесса подготовки
	управляющих программ. Читать чертежи и
	схемы объектов автоматизации.
	Имеет практический опыт: Выбором и
	согласованием работы оборудования для замены
	в процессе эксплуатации и проектирования
	систем АСУ ТП. В анализе отчетности по
	эксплуатации гибких производственных систем.

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ

1.О.31 Практикум по виду профессиональной деятельности (Системы автоматизированного проектирования), 1.О.10 Информационные технологии, 1.О.32 Практикум по виду профессиональной деятельности (Производственные процессы в машиностроении), Производственная практика (ориентированная, цифровая) (4 семестр)	1.О.29 Технологии искусственного интеллекта и машинного обучения в машиностроении
---	---

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
1.О.31 Практикум по виду профессиональной деятельности (Системы автоматизированного проектирования)	Знает: Методики планирования времени, методы моделирования физических, химических и технологических процессов Умеет: выстраивать траекторию саморазвития, выбирать и применять соответствующие методы моделирования физических, химических и технологических процессов Имеет практический опыт: реализовывать траекторию саморазвития на основе принципов образования, выбора и применения соответствующих методов моделирования физических, химических и технологических процессов
1.О.32 Практикум по виду профессиональной деятельности (Производственные процессы в машиностроении)	Знает: Основные принципы проектирования операций механической и физико-химической обработки с обеспечением заданного качества обработанных поверхностей деталей при максимальной технико-экономической эффективности; Умеет: Выбирать эффективные технологии, инструменты и оборудование машиностроительного производства; Имеет практический опыт: Выбора оборудования, инструментов, средств технологического оснащения для реализации технологических процессов изготовления продукции;
1.О.10 Информационные технологии	Знает: Современные информационные технологии, прикладные программные средства;, основы теории информации; основные аспекты проблем информационной безопасностии защиты информации: основы защиты информации и сведений, составляющих государственную тайну Умеет: Применять информационные технологии и стандартные прикладные программные средства для решения профессиональных задач; Пользоваться программным обеспечением и Интернеттехнологиями для работы с деловой информацией;, использовать возможности вычислительной техники и программного обеспечения, решать простые задачи алгоритмизации; решать типовые задачи

табличной обработки (создание и форматирование электронных таблиц, использовать основные пользовательские функции, простая статистическая обработка); создавать электронные презентации; использовать внешние носители информации для обмена данными между машинами, создавать резервные копии архивы данных и программ Имеет практический опыт: Работы с вычислительной техникой, передачей информации в среде локальных сетей Интернет; опытом работы на ПЭВМ с прикладными программными средствами, методами поиска и обмена информацией в глобальных и локальных компьютерных сетях; техническими и программными средствами защиты информации при работе с компьютерными системами. включая приемы антивирусной защиты Знает: современные информационные технологии в научно-исследовательской работе. методы моделирования физических, химических и технологических процессов, способы анализа научной информации и данных, принципы работы современных информационных технологий Умеет: решать научноисследовательские задачи, выбирать и применять соответствующие методы моделирования физических, химических и технологических процессов, проводить первичный анализ полученных результатов, представлять результаты, делать выводы, составлять и Производственная практика (ориентированная, оформлять отчеты, использовать современные цифровая) (4 семестр) информационных технологии при проведении НИР Имеет практический опыт: применения прикладных аппаратно-программных средств в научно-исследовательской работе, выбора и применения соответствующих методов моделирования физических, химических и технологических процессов, оформления документации в соответствии с требованиями гост; решения профессиональных задач в области металлургии и металлообработки с использованием информационных технологий и прикладных программных средств, работы с сайтами https://www1.fips.ru/ и https://scholar.google.ru/

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 54,25 ч. контактной работы

Вил унебной работи	Всего	Распределение по семестрам
Вид учебной работы	часов	в часах

		Номер семестра
		6
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	16	16
Лабораторные работы (ЛР)	16	16
Самостоятельная работа (СРС)	53,75	53,75
Подготовка к практическим занятиям	18	18
Подготовка к лабораторным занятиям	23,75	23.75
Подготовка к зачету	12	12
Консультации и промежуточная аттестация	6,25	6,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет

5. Содержание дисциплины

№ раздела	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах			
		Всего	Л	П3	ЛР
1 1	Современное промышленное производство и автоматизированные системы управления	12	4	4	4
2	Автоматизированные технологические комплексы	24	8	8	8
3	Автоматизация и роботизация процессов	12	4	4	4

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1		Общие положения, основные понятия, тенденции развития систем и средств промышленной автоматизации.	2
2		Основные режимы автоматизированной системы управления (АСУ ТП), Структура АСУ ТП.	2
3	2	Технические средства применяемые в АСУ ТП.	2
4	2	Индентификация технологических объектов управления. Задачи индентификации. Аналитические методы получения математических моделей технологических объектов.	2
5	,	Алгоритмы управления. Задачи управления технологическими объектами. Алгоритмы стабилизации заданного параметра.	2
6	,	Алгоритмы оптимального управления. Постановка задачи оптимального управления. Оптимизация нелинейных объектов.	2
7	3	Программные платформы SCADA-систем. Средства сетевой поддержки SCADA-систем. Встроенные языки программирования SCADA-систем. Базы данных.	2
8	3	Человеко-машинный интерфейс (HMI).	2

5.2. Практические занятия, семинары

No	№	Наименование или краткое содержание практического занятия, семинара	Кол-
занятия	раздела	The second secon	во

			часов
1	1	Программируемые логические контроллеры (ПЛК). Стандарты ПЛК. Архитектура ПЛК. Система ПЛК и ее компоненты. Типы ПЛК. Стандартные языки программирования.	2
2	1	Система ПЛК и ее компоненты. Типы ПЛК. Стандартные языки программирования. Защита Практической работы №1. КМ1.	2
3	2	Разработка алгоритма работы линейного интерполятора	2
4	2	Разработка программы на языке программирования Visual Basic работы линейного интерполятора	2
5	2	Разработка алгоритма работы кругового интерполятора.	2
6	2	Разработка программы на языке программирования Visual Basic работы кругового интерполятора. Защита Практической работы №2. КМ2.	2
7	3	Изучение робототизированных комплексов. Области применения робототизированных комплексов.	2
8	3	Изучение систем оптимизации. Алгоритмы управления системами оптимизации. Защита Практической работы №3. КМ3.	2

5.3. Лабораторные работы

№ занятия	<u>№</u> раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1,2	1	SCADA-системы. Организация взаимодействия с устройствами нижнего уровня. Открытость SCADA-систем. Средства визуализации. Отображение и архивирование данных. Защита Лабораторной работы №1. КМ4 на занятии 2.	4
3,4	2	OPC — промышленный стандарт и средство интеграции компонентов в промышленной автоматизации. DCOM и OPC-приложения. Краткий обзор SCADA-системы GeniDAQ. Системная архитектура GeniDAQ	4
5,6	,	Изучение систем стабилизации. Общие положения. Алгоритмы управления. Защита Лабораторной работы №2. КМ5 на занятии 6.	4
7,8		Системы стабилизации. Типовые схемы систем стабилизации. Сравнительная оценка систем автоматизации. Защита Лабораторной работы №3. КМ6 на занятии 8.	4

5.4. Самостоятельная работа студента

Выполнение СРС				
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов	
Подготовка к практическим занятиям	Методические пособия для самостоятельной работы студента [1] с. 6-48; Программное обеспечение [1], [2].	6	18	
Подготовка к лабораторным занятиям	Методические пособия для самостоятельной работы студента [1] с. 6-48; Программное обеспечение [1], [2].	6	23,75	
Подготовка к зачету	Основная печатная литература [1] с. 3-29; Дополнительная печатная литература [1] с. 47-64; Учебно-методические материалы в электронном виде [1] с. 134-170, [2] с. 24-71, [3] с. 161-167, [4] с.7-53; Информационные справочные системы	6	12	

F13	
1 .	ı
L J'	

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва - ется в ПА
1	6	Текущий контроль	Практическая работа №1 (раздел 1)	0,1	2	Практическая работа №1. Система ПЛК и ее компоненты. Типы ПЛК. Стандартные языки программирования. Контроль раздела 1. Проводится на практическом занятии 2. Студент выполняет практическое задание (выполняется с использованием оборудования и/или ПК), выданное преподавателем в начале занятия. Результатом выполнения задания является работоспособный модуль (ячейка), либо часть модуля. Порядок выставления баллов зависит от качества выполненной работы (оценивается преподавателем на месте): 2 балла: работа полностью выполнена в соответствии с заданием. Имеются небольшие недочеты, которые не оказывают влияния на работоспособность модуля/ячейки. 1 балл: работа выполнена, однако присутствуют ошибки, которые частично влияют на выполнение модулем/ячейкой функций, указанных в задании. 0 баллов: работа не выполнена, либо выполнена частично. Присутствуют серьезные ошибки, существенно влияющие на работу модуля/ячейки (выполняет функцию частично, либо не работает совсем.).	зачет
2	6	Текущий контроль	Практическая работа №2 (раздел 2)	0,1	2	Практическая работа №2. Разработка программы на языке программирования Visual Basic работы кругового интерполятора. Контроль раздела 2. Проводится на практическом занятии 6. Студент выполняет практическое задание (выполняется с использованием оборудования и/или ПК), выданное преподавателем в начале занятия.	зачет

						Результатом выполнения задания является работоспособный модуль (ячейка), либо часть модуля. Порядок выставления баллов зависит от качества выполненной работы (оценивается преподавателем на месте): 2 балла: работа полностью выполнена в соответствии с заданием. Имеются небольшие недочеты, которые не оказывают влияния на работоспособность модуля/ячейки. 1 балл: работа выполнена, однако присутствуют ошибки, которые частично влияют на выполнение модулем/ячейкой функций, указанных в задании. 0 баллов: работа не выполнена, либо выполнена частично. Присутствуют серьезные ошибки, существенно влияющие на работу модуля/ячейки (выполняет функцию частично, либо не работает совсем.).	
3	6	Текущий контроль	Практическая работа №3 (раздел 3)	0,2	2	Практическая работа №3. Изучение систем оптимизации. Алгоритмы управления системами оптимизации. Контроль раздела 3. Проводится на практическом занятии 8. Студент выполняет практическое задание (выполняется с использованием оборудования и/или ПК), выданное преподавателем в начале занятия. Результатом выполнения задания является работоспособный модуль (ячейка), либо часть модуля. Порядок выставления баллов зависит от качества выполненной работы (оценивается преподавателем на месте): 2 балла: работа полностью выполнена в соответствии с заданием. Имеются небольшие недочеты, которые не оказывают влияния на работоспособность модуля/ячейки. 1 балл: работа выполнена, однако присутствуют ошибки, которые частично влияют на выполнение модулем/ячейкой функций, указанных в задании. 0 баллов: работа не выполнена, либо выполнена частично. Присутствуют серьезные ошибки, существенно влияющие на работу модуля/ячейки (выполняет функцию частично, либо не работает совсем.).	зачет
4	6	Текущий контроль	Лабораторная работа №1 (Раздел 1)	0,2	3	Лабораторная работа №1. SCADA-системы. Организация взаимодействия с устройствами нижнего уровня. Открытость SCADA-систем. Средства визуализации. Отображение и архивирование данных. Контроль раздела 1. Проводится на лабораторном занятии 2.	зачет

						Студент показывает выполненное на ПК задание, которое включает в себя написание программы. Срок выполнения задания - 2 недели с момента проведения лабораторной работы. Критерии начисления баллов: - работа сдана в срок (1 балл); - аппаратная часть проекта настроена верно (1 балл); - программа написана верно (1 балл).	
5	6	Текущий контроль	Лабораторная работа №2 (Раздел 2)	0,2	3	Лабораторная работа №2. Изучение систем стабилизации. Общие положения. Алгоритмы управления. Контроль раздела 2. Проводится на лабораторном занятии 6. Студент показывает выполненное на ПК задание, которое включает в себя написание программы. Срок выполнения задания - 2 недели с момента проведения лабораторной работы. Критерии начисления баллов: - работа сдана в срок (1 балл); - аппаратная часть проекта настроена верно (1 балл); - программа написана верно (1 балл).	зачет
6	6	Текущий контроль	Лабораторная работа №3 (Раздел 3)	0,2	3	Лабораторная работа №3. Системы стабилизации. Типовые схемы систем стабилизации. Сравнительная оценка систем автоматизации. Контроль раздела 3. Проводится на лабораторном занятии 8. Студент показывает выполненное на ПК задание, которое включает в себя написание программы. Срок выполнения задания - 2 недели с момента проведения лабораторной работы. Критерии начисления баллов: - работа сдана в срок (1 балл); - аппаратная часть проекта настроена верно (1 балл); - программа написана верно (1 балл).	зачет
7	6	Проме- жуточная аттестация	Зачет	-	5	Студенту выдается билет, состоящий из 5-ти заданий (2 теоретических и 3 практических вопроса), позволяющих оценить сформированность компетенций. Неправильный ответ на задание соответствует 0 баллов, правильный - 1 балл. На ответы отводится 2 часа. По истечении этого времени преподаватель проверяет ответы, задает при необходимости уточняющие вопросы и выставляет оценку.	зачет

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	обучающегося по дисциплине Rd на основе рейтинга по текущему	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	1	N 2	<u>o</u>] 3 4	KN 15	М [6]
ОПК-4	Знает: Структуру интегрированных систем управления производством, основные характеристики каждого уровня архитектуры АСУ; основные технологические процессы; особенности систем числового программного управления; принципы автоматизации процесса подготовки управляющих программ; автоматизированные технологические комплексы	+	+-	+	+++	-+-
ОПК-4	Умеет: Настраивать системы управления и обработки информации, управляющие средства и комплексы; осуществлять их регламентное эксплуатационное обслуживание с использованием соответствующих инструментальных средств; оптимизировать многомерные линейные объекты в статике; использовать компьютерные CAD/CAM системы для автоматизации процесса подготовки управляющих программ. Читать чертежи и схемы объектов автоматизации.	+	+-	++-	+ +	
OHK-4	Имеет практический опыт: Выбором и согласованием работы оборудования для замены в процессе эксплуатации и проектирования систем АСУ ТП. В анализе отчетности по эксплуатации гибких производственных систем.	+	+-	+-	+++	-+-

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

1. Борисов А. М. Автоматизация технологических процессов : Технические средства, проектирование, лабораторный практикум : учеб. пособие для электротехн. специальностей вузов . Ч. 1 / А. М. Борисов, Н. Е.

- Лях ; Юж.-Урал. гос. ун-т (ЮУрГУ). Челябинск : Издательство ЮУрГУ, 2001. 403, [1] с.
- 2. Борисов А. М. Автоматизация технологических процессов: Технические средства, проектирование, лабораторный практикум: учеб. пособие для электротехн. специальностей вузов. Ч. 2 / А. М. Борисов, Н. Е. Лях; Юж.-Урал. гос. ун-т; ЮУрГУ. Челябинск: Издательство ЮУрГУ, 2001. 363 с.: ил.

б) дополнительная литература:

- 1. Автоматизация производственных процессов в машиностроении: Учеб. для вузов по направлениям подготовки бакалавров и магистров "Технология, оборудование и автоматизация машиностр. пр-в" и дипломир. специалистов "Конструктор.-технол. обеспечение машиностроит. пр-в" и "Автоматизир. технологии и пр-ва" / Н. М. Капустин, П. М. Кузнецов, А. Г. Схиртладзе и др.; Под ред. Н. М. Капустина. М.: Высшая школа, 2004. 414,[1] с.: ил.
- 2. Капустин Н. М. Автоматизация машиностроения: Учеб. для вузов по направлениям "Технология, оборудование и автоматизация машиностроит. пр-в", "Автоматизация и упр." / Н. М. Капустин, Н. П. Дьяконов, П. М. Кузнецов; Под ред. Н. М. Капустина. М.: Высшая школа, 2003. 222,[1] с.: ил.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Учебно-методическое пособие "Автоматизация типовых технологических процессов"

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Учебно-методическое пособие "Автоматизация типовых технологических процессов"

Электронная учебно-методическая документация

N	Вид литературы Наименование ресурса в электронной форме		Библиографическое описание
1	литература	Электронно- библиотечная система издательства Лань	Фельдштейн, Е.Э. Обработка деталей на станках с ЧПУ. [Электронный ресурс] / Е.Э. Фельдштейн, М.А. Корниевич. — Электрон. дан. — Минск: Новое знание, 2007. — 299 с. http://e.lanbook.com/book/2927
2	литература	Электронно- библиотечная система издательства Лань	Базров, Б.М. Основы технологии машиностроения: Учебник для вузов. [Электронный ресурс] — Электрон. дан. — М.: Машиностроение, 2007. — 736 с. http://e.lanbook.com/book/720
3	литература	библиотечная система	Фельдштейн, Е.Э. Автоматизация производственных процессов в машиностроении. [Электронный ресурс] — Электрон. дан. — Минск: Новое знание, 2011. — 265 с. http://e.lanbook.com/book/2902

		Электронно-	Зубарев, Ю.М. Автоматизация координатных измерений в
1	Основная	библиотечная	машиностроении. [Электронный ресурс] / Ю.М. Зубарев,
4	литература	система	С.В. Косаревский. — Электрон. дан. — СПб. : Лань, 2016. —
		издательства Лань	160 c. http://e.lanbook.com/book/75529

Перечень используемого программного обеспечения:

- 1. Microsoft-Windows(бессрочно)
- 2. Microsoft-Office(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

1. EBSCO Information Services-EBSCOhost Research Databases(28.02.2017)

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Лабораторные занятия		Исследовательский лабораторный комплекс "Мехатронные комплексы и системы автоматизации инженерных машин" (Исследовательский лабораторный комплекс "Интеллектуальный транспортный узел на базе ПЛК")
Практические занятия и семинары	812- 2 (36)	Научно-исследовательский программно-аппаратный комплекс "Синтез и анализ систем автоматического управления технологическими процессами" (Предустановленное программное обеспечение: 1. "VObjectOPC" -комплект 2D моделей виртуальных объектов автоматизации; 2. "Factory IO"- конструктор 3D моделей виртуальных объектов автоматизации; 3. Среда разработки программ для промышленных контроллеров Step 7 Professional; 4. Среда разработки и исполнения SCADA-системы WINCC Professional.)