ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Заведующий выпускающей кафедрой

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборота (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Воронцов А. Г. Пользовятель vorouslovang Lara подписания: 21 05 202

 \overline{A} . Г. Воронцов

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.М1.01 Радиационные технологии в электронике для направления 11.04.04 Электроника и наноэлектроника уровень Магистратура магистерская программа Наноэлектроника: квантовые технологии и материалы форма обучения очная кафедра-разработчик Физика наноразмерных систем

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 11.04.04 Электроника и наноэлектроника, утверждённым приказом Минобрнауки от 22.09.2017 № 959

Зав.кафедрой разработчика, д.физ.-мат.н., доц.

Разработчик программы, к.физ.-мат.н., доцент

Электронный документ, подписанный ПЭП, хранитея в системе электронного документооборота Южн-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Веронцея А. Г. Пользователь: vorontsovag Lara nonmeature 2 10 s. 2022

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога (Ожно-Уральского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдля: Дорагива Н. С Подволятель: duringinans [для под

А. Г. Воронцов

Н. С. Дюрягина

1. Цели и задачи дисциплины

Формирование у студентов комплекса профессиональных знаний и умений, а также усвоение физических процессов воздействия радиации на материалы электронной техники, электронные приборы и микросхемы. По окончанию освоения дисциплины обучающийся должен знать физическую природу процессов дефектообразования и легирования полупроводниковых материалов, используемых в электронной технике и интегральных микросхемах; пути реализации радиационной стойкости материалов для оптоэлектронных устройств; уметь теоретически исследовать процессы радиационных повреждений облученных полупроводниковых структур и интегральных микросхем; владеть навыками расчета радиационного воздействия и характеристик и радиационной стойкости материалов, электронных приборов и интегральных микросхем.

Краткое содержание дисциплины

Данный курс является теоретическим курсом, в котором излагаются основы взаимодействия ионизирующего излучения с веществом; объясняются процессы образования, диффузии и отжига дефектов, а также радиационного легирования; рассматриваются радиационные свойства материалов, оптоэлектронных приборов и интегральных микросхем, а также пути реализации их радиационной стойкости и методы детектирования радиации.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения	Планируемые результаты
ОП ВО (компетенции)	обучения по дисциплине
	Знает: Основные понятия и законы в области
ПК-3 Способен к организации, проведению и	радиационных технологий; принципы
руководству экспериментальными	построения радиационно-стойких интегральных
исследованиями с применением современных	схем
средств и методов	Умеет: Определять радиационную стойкость
	интегральных схем

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Нет	Не предусмотрены

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Нет

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 56,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 2
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	16	16
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	32	32
Лабораторные работы (ЛР)	0	0
Самостоятельная работа (СРС)	51,5	51,5
с применением дистанционных образовательных технологий	0	
Подготовка к семинарам	14	14
Подготовка к экзамену	30	30
Выполнение домашнего задания	7,5	7.5
Консультации и промежуточная аттестация	8,5	8,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

No॒	Наименование разделов дисциплины	Объем аудиторных занятий по видам в часах				
раздела	•	Всего	Л	П3	ЛР	
	Взаимодействие ионизирующего излучения с твердым телом	18	6	12	0	
2	Радиационные дефекты	4	2	2	0	
3	Радиационное легирование	2	0	2	0	
4	Детектирование излучения	4	2	2	0	
5	Свойства облученных полупроводников	10	2	8	0	
6	Радиационная физика полупроводниковых приборов	10	4	6	0	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Вводная лекция. Виды ионизирующего излучения и радиационных повреждений. Характеристики взаимодействия ионизирующего излучения с веществом	2
2	1	Облучение тяжелыми заряженными частицами и электронами. Ионизационные и радиационные потери энергии налетающей частицы. Линейный и экстраполированный свободные проблеги.	2
3	1	Облучение нейтронами и гамма-квантами.	2
4	2	Виды дефектов. Образование дефектов, их диффузия и отжиг.	2
5	4	Свойства облученных полупроводников и диэлектриков. Механические, электромагнитные и химические свойства облученных материалов. Индуцированная проводимость. Эффекты заряжения.	2

6)	Механизмы радиационных изменений в p-n переходах и биполярных транзисторах	2
7	0	Механизмы радиационных изменений в полевых транзисторах и интегральных микросхемах.	2
8	6	Радиационная стойкость полупроводниковых приборов и наноструктур	2

5.2. Практические занятия, семинары

<u>№</u> занятия	№ раздела	Наименование или краткое содержание практического занятия, семинара	Кол- во часов
1	1	Семинар 1. Источники ионизирующего излучения	2
2, 3	1	Практическое занятие 1. Взаимодействие тяжелых частиц с твердым телом	4
4, 5	1	Практическое занятие 2. Взаимодействие электронов с твердым телом	4
6	1	Практическое занятие 3. Взаимодействие гамма-квантов и рентгеновского излучения с твердым телом	2
7	2	Семинар 2. Радиационные дефекты	2
8	3	Семинар 3. Радиационное легирование материалов	2
9	4	Практическое занятие 4. Основы дозиметрии	2
10-12	5	Практическое занятие 5. Свойства облученных полупроводников.	6
13	5	Контрольная работа	2
14-16	6	Семинар 5-7. Взаимодействие ИИ с полупроводниковыми приборами	6

5.3. Лабораторные работы

Не предусмотрены

5.4. Самостоятельная работа студента

F	Выполнение СРС							
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов					
Подготовка к семинарам	Белоус, А. И. Космическая электроника [Текст] Кн. 1 в 2 кн. А. И. Белоус, В. А. Солодуха, С. В. Шведов М.: Техносфера, 2015: стр. 1-696. Белоус, А. И. Космическая электроника [Текст] Кн. 2 в 2 кн. А. И. Белоус, В. А. Солодуха, С. В. Шведов М.: Техносфера, 2015: стр. 697-1183. Таперо К.И., Диденко С.И. Основы радиационной стойкости изделий электронной техники: учебнометодическое пособие. Издательство "МИСИС", 2013: стр.1-349. Таперо, К. И. Основы радиационной стойкости изделий электронной техники: Радиационные эффекты в изделиях электронной техники [Текст] учеб. пособие для вузов по направлению 210100 "Электроника и наноэлектроника" К. И. Таперо, С. И. Диденко; МИСиС (нац. исслед. технол. ун-т), Каф. полупроводниковой	2	14					

	электроники и физики полупроводников М.: Издательский Дом МИСиС, 2013: стр 1-348. Лебедев, А. И. Физика полупроводниковых приборов [Текст] учеб. пособие для вузов по специальностям 010701 - Физика и др. А. И. Лебедев М.: Физматлит, 2008: стр. 1-487. Кулаков, В. М. Действие проникающей радиации на изделия электронной техники Ред. Е. А. Ладыгина М.: Советское радио, 1980: стр. 1-224. Ахиезер, И. А. Введение в теоретическую радиационную физику металлов и сплавов Киев: Наукова думка, 1985: стр. 1-142.		
Подготовка к экзамену	Яловец А.П. Радиационная физика твердого тела: Гл. 1: п-й. 1.1-1.5; Гл.2, п-ф. 2.3-2.4); Гл. 4, п-ф. 4.1-4.6); Аброян, И. А. Физические основы электронной и ионной технологии Учеб. пособие для специальностей электрон. техники вузов: Гл. 1, п-ф. 1.1-1.2; Гл. 2 п-ф. 2.1-2.3; Гл. 3, п-ф. 3.1-3.3; Гл. 4, п-ф. 4.1-4.8; Гл.5, п-ф. 5.1-5.5; Гл. 7, п-ф. 7.1-7.3. Белоус, А. И. Космическая электроника [Текст] Кн. 1 в 2 кн.: Гл.7, п-ф. 7.1-7.11; Гл.8, п-ф. 8.1-8.4. Белоус, А. И. Космическая электроника [Текст] Кн. 2 в 2 кн.: Гл. 9, п-ф.9.1-9.4; Гл.12, п-ф. 12.1-6; Гл. 13, п-ф.13.1-6; Гл. 14, п-ф. 14.1-3; Гл.15, п-ф. 15.13.	2	30
Выполнение домашнего задания	Яловец А.П. Радиационная физика твердого тела: Гл. 1: п-й. 1.1-1.5; Гл.2, п-ф. 2.3-2.4); Гл. 4, п-ф. 4.1-4.6). Аброян, И. А. Физические основы электронной и ионной технологии Учеб. пособие для специальностей электрон. техники вузов: Гл. 1, п-ф. 1.1-1.2; Гл. 2 п-ф. 2.1-2.3; Гл. 3, п-ф. 3.1-3.3; Гл. 4, п-ф. 4.1-4.8; Гл.5, п-ф. 5.1-5.5; Гл. 7, п-ф. 7.1-7.3.	2	7,5

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	2	Текущий	KM1.	15	5	Студент получает 5 баллов, - полностью	экзамен

			I _D			1	
		контроль	Выступление на			раскрыл тему доклада; -	
			семинаре 1			продемонстрировал уверенное владение	
						понятийным аппаратом и способность	
						анализировать и делать обобщающие	
						выводы; для подготовки использовал	
						современную литературу;	
						исчерпывающе ответил на все вопросы;	
						студент получает 4 балла, если: - почти	
						полностью раскрыл тему доклада; -	
						уверенно владеет понятийным	
						аппаратом и способностью	
						анализировать и делать обобщающие	
						выводы; - ответил почти на все вопросы	
						или на все но недостаточно	
						исчерпывающе; студент получает 3	
						балла, не полностью раскрыл тему	
						доклада, продемонстрировал	
						недостаточное владение понятийным	
						аппаратом; студент получает 2 балла,	
						если поверхностно раскрыл тему	
						доклада или продемонстрировал	
						поверхностное знание понятийного	
						аппарата; студент получает 1 балл, если	
						предоставил текст доклада, но не	
						выступал; студент получает 0 баллов,	
						если студент не сделал доклад или	
						подготовил доклад не по теме.	
						Максимальный балл за контрольную	
						работу 10. Состоит из 4 теоретических	
						вопросов, каждый по 1-2 балла. 1	
						практическая задача 4 балла. Задача	
			10.40			решена полностью – 4 балла; задача	
1	2	Текущий	KM2.	10	10	решена с небольшим допущением - 3	
2	2	контроль	Контрольная	10	10	балла; задача не решена, но казаны	экзамен
		1	работа			необходимые формулы для ее решения –	
						2 балла; задача не решена, указанных	
						формул не достаточно для решения	
						задачи – 1 балл; задачу не пытались	
						решать, или указанные формулы не	
						верны - 0 баллов	
						Студент получает 5 баллов, - полностью	
						раскрыл тему доклада; -	
						продемонстрировал уверенное владение	
						понятийным аппаратом и способность	
						анализировать и делать обобщающие	
						выводы; для подготовки использовал	
			KM3.			современную литературу;	
3	2	Текущий	Выступление на	15	5	исчерпывающе ответил на все вопросы;	экзамен
ر	<i>L</i>	контроль	-	13	ر	студент получает 4 балла, если: - почти	JNSAMCH
		_	семинаре 2			полностью раскрыл тему доклада; -	
						уверенно владеет понятийным	
						аппаратом и способностью	
						анализировать и делать обобщающие	
						выводы; - ответил почти на все вопросы	
						или на все но недостаточно	
						исчерпывающе; студент получает 3	
			<u> </u>		<u> </u>	pro repribibatorite, or yethir florry fact 3	

			T	1	ī		
						балла, не полностью раскрыл тему	
						доклада, продемонстрировал	
						недостаточное владение понятийным	
						аппаратом; студент получает 2 балла,	
						если поверхностно раскрыл тему	
						доклада или продемонстрировал	
						поверхностное знание понятийного	
						аппарата; студент получает 1 балл, если	
						предоставил текст доклада, но не	
						выступал; студент получает 0 баллов,	
						если студент не сделал доклад или	
						подготовил доклад не по теме.	
						Активность на семинарах оценивается	
						преподавателем в конце семестра по	
						1 -	
						результатам всех семинаров.	
						Максимально возможный балл 5.	
						Студент получает 5 баллов - если	
						принимал активное участие на как	
						минимум 4 из 6 семинаров и пропустил	
						не больше 2 семинаров. Студент	
		Текущий	KM4.			получает 4 балла, если пропустил не	
4	2	контроль	Активность на	10	4	больше 2 семинаров и принимал	экзамен
		контроль	семинарах			активное участие на 2 из 6 семинарах.	
						Студент получает 3 балла, если	
						пропусти не больше 4 семинаров и	
						принимал активное участие на 2 из 6	
						семинаров. Студент получает 2 балла,	
						если присутствовал на 2 семинарах и	
						принимал на них активное участие.	
						Студент получает 1 балл, если	
						пропустил не больше 3х семинаров.	
						Домашние задание заключается в	
			KM5.			решении типовых задач по темам	
		Т				практических занятий. Максимальная	
5	2	Текущий	Выполнение	10	10	оценка за одно домашнее задание - 2	экзамен
		контроль	домашних			балла. 0 - не выполнено, 1 - выполнено	
			заданий			не полностью, 2 - выполнено. Всего	
						домашних заданий 5. Максимальный	
						балл за все домашние задания 10.	
						Экзаменационный билет состоит из двух	
						теоретических вопросов по 10 баллов	
						каждый и одной задачи на 10 баллов.	
						Максимальный балл за экзамен 30	
						баллов.	
						За теоретический вопрос студент	
						получает от 0 до 10 баллов в	
		Проме-	KM6.			зависимости от полноты ответа, где: 10	
6	2	жуточная	Промежуточная	_	30	баллов - вопрос раскрыт полностью; 5	экзамен
	~	аттестация	аттестация			баллов – вопрос не раскрыт, но студент	JAJUMON
		иттестация	аттестация			знает основные формулы и	
						терминологию; 0 баллов – студент не	
						знает терминологию.	
						За задачу студент может получить от 0	
						до 10 баллов в зависимости от полноты	
						решения, где: 10 баллов - задача решена;	
			i			9-6 задача решена с ошибками (каждая	

						небольшая ошибка по невнимательности - минус 1 балл, каждая грубая ошибка - минус 2 балла); 5 баллов - задача не решена, но указаны все формулы, необходимые для ее решения; 4-1 балла — задача не решена, указанных формул не достаточно для решения задачи; 0 баллов — студент не пытался решить задачу, предложенные формулы для решения не верны. Студент может получить	
7	2	Бонус	КМ7. Баллы за особые достижения	-	15	дополнительные баллы за активную работу в семестре. Максимальное количество бонусных баллов – 15. До 15 баллов - за дополнительное выступление на семинаре.	экзамен

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	На экзамене оценивается учебная деятельность студента по дисциплине на основе полученных в течение семестра баллов за контрольно-рейтинговые мероприятия текущего контроля. Студент может улучшить свой рейтинг, пройдя контрольно-рейтинговое мероприятие "промежуточная аттестация". Промежуточная аттестация проводится по расписанию сессии в виде письменного экзамена. Экзаменационный билет состоит из 3 заданий, 2 теоретических вопроса и 1 задач. Также преподаватель может провести устный опрос по дисциплине с целью определения степени освоения студентом материала дисциплины.	· ·

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения	\vdash	Ť	_	M 5 6	-
IIIK – 3	Знает: Основные понятия и законы в области радиационных технологий; принципы построения радиационно-стойких интегральных схем	+	+ -	+	+-	
ПК-3	Умеет: Определять радиационную стойкость интегральных схем		\exists	H	+	+

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

- а) основная литература:
 - 1. Белоус, А. И. Космическая электроника [Текст] Кн. 1 в 2 кн. А. И. Белоус, В. А. Солодуха, С. В. Шведов. М.: Техносфера, 2015. 1-696 с. (продолж. паг.) ил.
 - 2. Белоус, А. И. Космическая электроника [Текст] Кн. 2 в 2 кн. А. И. Белоус, В. А. Солодуха, С. В. Шведов. М.: Техносфера, 2015. 697-1183 с. (продолж. паг.) ил.
- б) дополнительная литература: Не предусмотрена
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. А.П. Яловец. Радиационная физика твердого тела: Тексты лекций/А.П. Яловец. Федеральное агенство по образованию Российской Федерации Южно-Уральский государтвенный университет. Челябинск, 2006. 52 с. 2006.

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. А.П. Яловец. Радиационная физика твердого тела: Тексты лекций/А.П. Яловец. Федеральное агенство по образованию Российской Федерации Южно-Уральский государтвенный университет. - Челябинск, 2006. - 52 с. 2006.

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	Электронно- библиотечная система издательства Лань	Таперо К.И., Диденко С.И. Основы радиационной стойкости изделий электронной техники: учебнометодическое пособие. Издательство "МИСИС", 2013 349c https://e.lanbook.com/book/116833
2	Дополнительная литература	Электронно- библиотечная система издательства Лань	Алексеев И.И. Ионизирующие излучения космического пространства и их воздействие на бортовую аппаратуру космических аппаратов / Под ред. докт. техн. наук, проф. Г.Г. Райкунова — Москва: ФИЗМАТЛИТ, 2013 — 256 с. — ISBN 978-5-921-1456-1 https://e.lanbook.com/book/91181
Дополнительная дитература одиночных сбоев в БИС: Метод. курсовых работ по дисциплине стойкости изделий электронной применения / К.И. Таперо — Мо		Таперо К.И. Расчет частоты и вероятности возникновения одиночных сбоев в БИС: Метод. указ. к выполнению курсовых работ по дисциплине "Основы радиационной стойкости изделий электронной техники космического применения / К.И. Таперо — Москва: МИСиС, 2006 —39 с. https://e.lanbook.com/book/116697	
4	Основная литература	Электронно- библиотечная	Бондаренко, Г. Г. Радиационная физика, структура и прочность твердых тел: учебное пособие / Г. Г. Бондаренко.

Перечень используемого программного обеспечения:

Нет

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий			
1	305 (16)	Компьютер, проектор			
Экзамен	305 (16)	Компьютер			
Лекции	305 (16)	компьютер, проектор			