ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ: Директор филиала Филиал г. Нижневартовск

В. Н. Борщенюк

РАБОЧАЯ ПРОГРАММА

дисциплины 1.Ф.П1.02 Микропроцессорная техника и компьютеры в приборостроении

для направления 12.03.01 Приборостроение

уровень Бакалавриат

профиль подготовки Информационно-измерительные технологии в нефтегазовой отрасли

форма обучения очная

кафедра-разработчик Гуманитарные, естественно-научные и технические дисциплины

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 12.03.01 Приборостроение, утверждённым приказом Минобрнауки от 19.09.2017 № 945

Зав.кафедрой разработчика, к.филос.н., доц.

И. Г. Рябова

Разработчик программы, к.пед.н., доцент

Е. А. Зверева

СОГЛАСОВАНО

Руководитель образовательной программы к.пед.н.

Е. А. Зверева

1. Цели и задачи дисциплины

Глобальной целью изучения дисциплины «Микропроцессорная техника и компьютеры в приборостроении» является знание студентами принципов построения микропроцессорных систем и их программного обеспечения. Основные задачи — изучение арифметических, логических основ построения микропроцессоров и микроконтроллеров, их аппаратного обеспечения и системы команд.

Краткое содержание дисциплины

Основные понятия Представление данных (арифметические основы вычислительных машин) Синтез комбинационных устройств (логические основы вычислительных машин) Логические устройства с памятью, интегральные триггеры Оперативные запоминающие устройства с произвольным доступом Принципы построения микропроцессоров и микропроцессорных систем; Архитектура микропроцессорных устройств Микропроцессор 8086 (1810ВМ86) Формирование сигналов выбора устройств (СS) в микропроцессорных систем Микропроцессор 80286 Микропроцессор 80386 Методы повышения производительности микропроцессоров Программирование 80386

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
ПК-2 Способность разрабатывать и моделировать схемы отдельных аналоговых и цифровых блоков и всего сложнофункционального блока	Знает: способы разработки и моделирования схемы отдельных цифровых блоков и всего сложнофункционального блока Умеет: применять микропроцессорную технику и компьютеры в моделировании схем отдельных цифровых блоков и всего сложнофункционального блока Имеет практический опыт: моделирования отдельных цифровых цифровых блоков
с нормативными требованиями	Знает: нормативную базу подготовки отдельных видов технической документации Умеет: подготавливать элементы документации, программ проведения отдельных этапов работ и другие документы в соответствии с нормативными требованиями Имеет практический опыт: применения компьютерной техники в подготовке элементов технической документации

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин,	Перечень последующих дисциплин,
видов работ учебного плана	видов работ
Электроника и микропроцессорная техника,	Цифровые измерительные устройства,
Информатика и программирование,	Программное обеспечение измерительных
Экономика,	процессов,

Академия интернета вещей,	Экономика и управление на предприятии,
Физические основы электроники	Оптико-электронные измерения,
	Оптико-электронные приборы,
	Производственная практика, научно-
	исследовательская работа (8 семестр)

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: методы сбора и анализа данных с
	устройств ІоТ., методы организации
	инфраструктуры "Интернета Вещей" (IoT),
	включая протоколы связи, архитектуру конечных
	устройств, сенсорные устройства., современные
	программные средства подготовки
	конструкторско-технологической документации.
	Умеет: использовать распределенные
	вычислительные системы, облачные и
	мобильные технологии для разработки
Академия интернета вещей	приложений "Интернета Вещей" (ІоТ). Имеет
-	практический опыт: прототипирования ІоТ-
	устройств с микрокомпьютерами Samsung
	ARTIK, сенсорами и модулями беспроводной
	связи., Имеет практический опыт: обеспечения
	кибербезопасности для конечных устройств
	"Интернета Вещей" (IoT)., разработки элементов
	технической документации в соответствии с
	требованиями Единой системы конструкторской
	документации и Единой системой программной
	документации.
	Знает: основные проблемы своей предметной
	области, методы и средства их решения;
	основные методы анализа и расчета схем с
	электронными элементами., принципы работы
	электронных элементов измерительных
	устройств и систем., основы применения
	методов математического моделирования в
	приборостроении, полупроводниковые приборы:
	принцип действия и характеристики; усилители:
	основные технические показатели и
	классификация; простейшие усилительные
Электроника и микропроцессорная техника	каскады; усилители постоянного тока,
	дифференциальные усилительные каскады;
	операционные усилители: принципы построения,
	основные технические показатели; простейшие
	схемы на операционных усилителях; обратные
	связи в усилителях, их влияние на основные
	характеристики и параметры усилителей;
	избирательные усилители и генераторы на
	операционных усилителях; транзисторные
	каскады усиления мощности; источники питания
	электронной аппаратуры: выпрямители,
	сглаживающие фильтры, стабилизаторы тока и

напряжения; ключевой режим работы транзисторов, методы улучшения характеристик транзисторных ключей; импульсный режим работы операционных усилителей, компараторы напряжения, мультивибриторы, генераторы треугольного и пилообразного напряжения; основные характеристики и параметры логических элементов; схемотехника и особенности логических элементов на биполярных и полевых транзисторах; функциональные узлы микропроцессорных устройств: триггеры, регистры, счетчики, мультиплексоры, демультиплексоры и дешифраторы, сумматоры и сравнивающие устройства; особенности схемотехники измерительных устройств: преобразователи напряжения в ток, идеальные выпрямители, функциональные преобразователи; интегральные четырехквадрантные перемножители напряжений; инструментальные усилители; проектирование активных фильтров; измерительные преобразователи для резистивных и емкостных датчиков., основные этапы проектирования электронных устройств: от технического задания до схемы электрической принципиальной; современные программные средства подготовки конструкторскотехнологической документации Умеет: анализировать, синтезировать и исследовать типовые электронные схемы, используемые в приборостроении., пользоваться измерительными приборами., применять методологию научного познания и использовать её в практической деятельности в области приборостроения, пользоваться современными средствами разработки проектной документации. Имеет практический опыт: расчета режимов работы элементов электронных устройств; разумного выбора из имеющегося набора серийно выпускающихся элементов необходимых; синтеза заданных параметров электронных устройств, в том числе измерительных., проведения комплекса измерений по заданной методике, самостоятельного обучения новым методам исследования в профессиональной области, решения проектных задач с использованием информационных технологий.

Информатика и программирование

Знает: основы теории информации: понятие и свойства информации. Меры и единицы представления, измерения и хранения информации., технические и программные средства реализации информационных технологий; глобальные и локальные компьютерные сети; современные языки программирования, программное обеспечение и

технологии программирования; средства автоматизации математических расчетов. современные языки программирования, программное обеспечение и технологии программирования; средства автоматизации математических расчетов., Классификация программного обеспечения. Понятие и назначение системного и служебного (сервисного) программного обеспечения. Операционные системы. Стандарты оформления документации ПО ЕСПД, принципы, технологии и протоколы компьютерных сетей; основы комплексной защиты информации в компьютерных системах; шифрование информации; понятие электронной подписи; понятие информационной безопасности, виды угроз; компьютерные вирусы, вирусоподобные программы, виды антивирусных программ, технологии обработки научно-технической информации и результатов исследований с помощью средств ИКТ, технологии обработки и представления текстовой и числовой информации с помощью пакета прикладных программ MS Word, MS Excel, MS Power Point, основные возможности пакета программ по автоматизации инженерно-технических расчетов, назначение, интерфейс, визуализация данных. Умеет: использовать возможности вычислительной техники и программного обеспечения, решать простые задачи алгоритмизации, создавать программы на языке высокого уровня., использовать возможности вычислительной техники и программного обеспечения; решать простые задачи алгоритмизации; создавать программы на языке высокого уровня., использовать современные информационные технологии и программное обеспечение при решении задач приборостроения; создавать простые базы данных; разрабатывать программное обеспечение несложных задач, обрабатывать научно-техническую информацию и результаты исследований с помощью средств ИКТ, обрабатывать и представлять текстовую и числовую информацию с помощью пакета прикладных программ MS Word, MS Excel, MS Power Point, применять основные возможности пакета программ по автоматизации инженернотехнических расчетов, Имеет практический опыт: поиска, хранения, обработки, анализа и представления информационных ресурсов; работы с электронными ресурсами научной библиотеки ЮУрГУ, работы на компьютере с прикладными программными средствами; навыками программирования и математического моделирования., разработки текстовой,

программной документации в соответствии с нормативными требованиями ЕСПД, работы с системами программирования; применения облачных сервисов Интернета., обработки научно-технической информации и результатов исследований с помощью средств ИКТ, обработки и представления текстовой, числовой и графической информации; создания электронных презентаций; выполнения элементов нормативных технических документов из комплекса ЕСПД.

Знает: физические основы электропроводности полупроводников; электронно-дырочный переход и его свойства; полупроводниковые диоды характеристики и параметры: выпрямительные, высокочастотные, импульсные, диоды Шоттки, опорные, туннельные и обращенные, варикапы, фотодиоды, светодиоды, оптоэлектронные пары; полевые транзисторы: с управляющим переходом: принцип действия, характеристики и параметры, полевые транзисторы с изолированным затвором и индуцированным каналом: принцип действия, характеристики и параметры; полевые транзисторы с изолированным затвором и встроенным каналом: принцип действия, характеристики и параметры; биполярные транзисторы: принцип действия, токораспределение, схемы включения, характеристики и параметры в схеме включения с общей базой, характеристики и параметры в схеме включения с общим эмиттером, влияние температуры на характеристики и параметры биполярного транзистора, переходные и частотные характеристики биполярных транзисторов, транзисторы Шоттки; тиристоры: двухэлектродные приборы - динисторы; трехэлектродные приборы - тринисторы; четырехэлектродные приборы - полностью управляемые тиристоры; симисторы. Необходимые для проектирования предельные эксплуатационные характеристики полупроводниковых приборов., методы определения эксплуатационных характеристик полупроводниковых приборов. Умеет: различать полупроводниковые приборы по их условным графическим обозначениям; искать аналоги полупроводниковых приборов., экспериментально определять работоспособность и параметры полупроводниковых приборов. Имеет практический опыт: самостоятельного обучения

новым методам исследования в

характеристиках и параметрах

профессиональной области; методами пошаговой детализации решения задачи; использования базы данных со справочными материалами о

Физические основы электроники

	полупроводниковых приборов., работы с
	соответствующим измерительным
	оборудованием.
	Знает: методику оценки экономической
	эффективности проекта и оформление
	соответствующей документации, способы и
	методы обоснования экономических решений,
	экономические ограничения на этапах
	жизненного цикла приборов, информационно-
	измерительных систем, необходимые для
	осуществления профессиональной деятельности
	экономические понятия Умеет: рассчитывать
	показатели оценки экономической
	эффективности проекта с учетом фактора
	неопределённости, оформлять отчетную
	документацию, принимать обоснованные
	экономические решения в различных, решать
	профессионально-ориентированные задачи с
	учетом экономических ограничений, определять
Экономика	круг задач в рамках избранных видов
	профессиональной деятельности, планировать
	собственную деятельность исходя из имеющихся
	ресурсов; соотносить главное и второстепенное,
	решать поставленные задачи в рамках избранных
	видов профессиональной деятельности Имеет
	практический опыт: оценки экономической
	эффективности проектов с учетом фактора
	неопределённости и оформления отчетной
	документации по результатам оценки, принятия
	обоснованных экономических решений в
	профессиональной деятельности, решения
	профессионально-ориентированных задач с
	учетом экономических ограничений, применения
	экономических законов для решения задач в
	области избранных видов профессиональной
	деятельности

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 55,25 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 6
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	48	48
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	0	0
Лабораторные работы (ЛР)	16	16
Самостоятельная работа (СРС)	52,75	52,75

с применением дистанционных образовательных технологий	0	
Выполнение, оформление курсовой работы по дисциплине	36	36
Оформление отчетов по лабораторным работам	8,75	8.75
Подготовка к зачету	8	8
Консультации и промежуточная аттестация	7,25	7,25
Вид контроля (зачет, диф.зачет, экзамен)	-	зачет,КР

5. Содержание дисциплины

№	Наименование разделов дисциплины		Объем аудиторных занятий по видам в часах			
раздела			Л	ПЗ	ЛР	
1	Арифметические и логические основы вычислительных машин	20	14	0	6	
	Интегральные триггеры, запоминающие устройства с произвольным доступом	14	8	0	6	
3	Принципы построения микропроцессоров и микропроцессорных систем, архитектура и интерфейс микропроцессоров, система команд и ассемблер	14	10	0	4	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1	1	Меры и единицы представления, измерения и хранения информации	1
2	1	Позиционные и непозиционные системы счисления.	1
3	1	Кодирование данных в ЭВМ	2
4	1	Арифметические операции в естественной форме представления двоичных чисел	1
5	1	Арифметические операции в форме с плавающей точкой	1
6	I I	Арифметические операции в форме с плавающей точкой. Погрешности выполнения арифметических операций.	2
7	1	Логические основы ЭВМ.	2
8		Логические элементы и синтез комбинационных схем. Статические и динамические параметры логических элементов.	2
9	1	Типовые комбинационные логические схемы: сумматоры, дешифраторы, мультиплексоры.	2
10	2	Логические устройства с памятью: интегральные триггеры.	2
11	2	Логические устройства с памятью: счетчики, регистры.	2
12	2	Оперативные запоминающие устройства с произвольным доступом	4
13	3	Принцип построения микропроцессорных систем и микропроцессоров	2
14		Микропроцессор 8086: временные диаграммы и архитектура, прерывания и режим ПДП	2
15		Микропроцессор 80286: формирование физического адреса, работа компьютера в режиме ПДП, многозадачность и защита	2
16	3	Система команд микропроцессорной системы	2
17	3	Программирование на СИ+ в среде IAR	2

5.2. Практические занятия, семинары

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1	1	Системы счисления: цель работы получить навык перевода целых и вещественных чисел из одной позиционной системы счисления в другую; получить навык выполнения арифметических действий в позиционных системах счисления.	2
2		Формы представления чисел в ЭВМ: цель работы получить навык в определении значения целых и вещественных чисел по их представлению в ЭВМ	2
3	1	Основные понятия алгебры логики. Цель работы научиться определять истинность (ложность) высказываний, применять логические операции. Синтеза комбинационных схем с заданным алгоритмом функционирования.	2
4	2	Проектирование схемы последовательностного логического устройства. По заданным выходным сигналам триггера осуществить проектирование схемы последовательностного логического устройства, реализующего заданный закон. Записать выражения для СКНФ и СДНФ. Выполнить минимизацию логических функций с использованием метода Карно-Вейча. Построить функциональную схему устройства по МД(К)НФ на элементах И(ИЛИ)-НЕ с использованием микросхем заданной серии. Рассчитать задержку работы устройства и потребляемую мощность. Построить временные диаграммы его работы.	3
5	2	Синтез триггера с произвольным законом функционирования. Синтез дискретного устройства: устройство состоит из генератора тактовых импульсов (ГТИ), делителя частоты, счётной схемы, двух дешифраторов и элементов индикации. Частота вырабатываемых генератором импульсов, уменьшается делителем до 0,1 Гц. Счётная схема, в зависимости от числа поступающих на её вход импульсов, устанавливается в одно из устойчивых состояний, соответствующих определённым комбинациям кода. Каждая кодовая комбинация, отображается на индикаторах соответствующим ей восьмеричным числом.	3
6		Разработка программы на ассемблере asm и ее отладка на компьютере.	4

5.4. Самостоятельная работа студента

Выполнение СРС					
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на ресурс	Семестр	Кол- во часов		
Выполнение, оформление курсовой работы по дисциплине	Основная и дополнительная литература, дидактические материалы	6	36		
Оформление отчетов по лабораторным работам	Основная и дополнительная литература, дидактические материалы	6	8,75		
Подготовка к зачету	Основная и дополнительная литература	6	8		

6. Текущий контроль успеваемости, промежуточная аттестация

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	6	Текущий контроль	Выполнение и защита лабораторных работ	1		Каждая работа оценивается в 15 баллов, 10 баллов за выполнение (работу необходимо выполнить полностью) и 5 баллов за защиту 15 баллов - работа выполнена верно, без замечаний, получены ответы на все вопросы при защите 10 баллов - работа выполнена, есть ошибки, ответы на вопросы при защите получены, есть небольшие замечания. Либо работа выполнена верно, принята без защиты 5 баллов - работа выполнена, есть замечания, принята без защиты. 0 баллов -работа не выполнена	зачет
2	6	Проме- жуточная аттестация	Собеседование	-		Максимальная оценка за собеседование 5 баллов (2-3 вопроса) 5 баллов - получены верные ответы на вопро 4 балла - получены ответы на вопросы, но допущены некоторые неточности 3 балла - получены ответы только на часть вопросов	зачет
3	6	Курсовая работа/проект	Выполнение и защита курсовой работы	-	5	Отлично: работа выполнена самостоятельно, полностью, в соответствии с методическими рекомендациями, безошибочно, с необходимыми пояснениями, оформление пояснительной записки выполнено в соответствии с требованиями стандартов, Сделаны выводы по работе. Хорошо: работа выполнена самостоятельно, полностью, в соответствии с методическими рекомендациями, необходимыми пояснениями. Допустимы незначительные замечания к содержанию работы или оформлению пояснительной записки. Оформление пояснительной записки выполнено в соответствии с требованиями стандартов, рассчитана полная погрешность измерительного устройства, цифрового измерительного устройства,	кур- совые работы

	сделаны выводы по работе. Удовлетворительно: работа выполнена самостоятельно, в соответствии с методическими рекомендациями, без грубых ошибок, с необходимыми пояснениями. Возможно невыполнение одного задания курсовой работы. Оформление пояснительной записки выполнено в соответствии с требованиями стандартов с замечаниями, сделаны выводы по работе. Неудовлетворительно: курсовая работа выполнена с ошибками, оформление
	пояснительной записки не соответствует

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
зачет	аттестации и результатов собеседования согласно Положению БРС. Лиительность зачета - 20 мин. из них 15 минут на	В соответствии с пп. 2.5, 2.6 Положения
курсовые работы	1 / 1 1	В соответствии с п. 2.7 Положения

6.3. Оценочные материалы

Компетенции	Результаты обучения		М КІ 2	Т	
ПК-2	Знает: способы разработки и моделирования схемы отдельных цифровых блоков и всего сложнофункционального блока	+	+	7	+
	Умеет: применять микропроцессорную технику и компьютеры в моделировании схем отдельных цифровых блоков и всего сложнофункционального блока	+	+	- -	+
ПК-2	Имеет практический опыт: моделирования отдельных цифровых блоков	+	+		+
ПК-3	Знает: нормативную базу подготовки отдельных видов технической документации	+	+	-	+
	Умеет: подготавливать элементы документации, программ проведения отдельных этапов работ и другие документы в соответствии с нормативными требованиями	+	. +	- -	+
IIIK – 4	Имеет практический опыт: применения компьютерной техники в подготовке элементов технической документации	+	+	<u> </u>	+

Фонды оценочных средств по каждому контрольному мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

- б) дополнительная литература:
 - 1. Безуглов, Д.А. Цифровые устройства и микропроцессоры [Текст] : учеб. пособие / Д.А.Безуглов, И.В. Калиенко.- Изд. 2-е.- Ростов н/Д.: Феникс, 2008.-468с.: ил.- ISBN 978-5-222-13917-2
 - 2. Костров, Б.В. Архитектура микропроцессорных систем [Текст]: учеб. пособие / Б.В.Костров, В.Н.Ручкин.-М.: Диалог-МИФИ, 2007.-304с.
- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке: Не предусмотрены
- г) методические указания для студентов по освоению дисциплины:
 - 1. Методические указания по изучению дисциплины

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Методические указания по изучению дисциплины

Электронная учебно-методическая документация

N	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	Электронно- библиотечная система издательства Лань	Смирнов, Ю. А. Основы микроэлектроники и микропроцессорной техники: учебное пособие / Ю. А. Смирнов, С. В. Соколов, Е. В. Титов. — 2-е изд., испр. — Санкт-Петербург: Лань, 2021. — 496 с. — ISBN 978-5-8114-1379-9. https://e.lanbook.com/book/168550
2	Основная литература	Электронно- библиотечная система Znanium.com	Гуров, В.В. Микропроцессорные системы: учебник / В.В. Гуров М.: НИЦ ИНФРА-М, 2019 336 с ISBN 978-5-16-009950-7. http://znanium.com/bookread2.php?book=995609
3	Дополнительная литература	Электронно- библиотечная система издательства Лань	Китаев, Ю.В. Основы микропроцессорной техники. Ч. 1 [Электронный ресурс]: учебное пособие / Ю.В. Китаев. — Электрон. дан. — Санкт-Петербург: НИУ ИТМО, 2016. — 51 с. https://e.lanbook.com/book/91388
4	Дополнительная литература	Электронно- библиотечная система издательства Лань	Васильев, И.А. Основы микропроцессорной техники с элементами моделирования в среде Multisim [Электронный ресурс]: учебное пособие / И.А. Васильев Москва: МГТУ им. Н.Э. Баумана, 2017. — 60 с. https://e.lanbook.com/book/103281.

Перечень используемого программного обеспечения:

- 1. -Scilab(бессрочно)
- 2. Microsoft-Windows(бессрочно)
- 3. Microsoft-Office(бессрочно)
- 4. PTC-MathCAD(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий	
Практические занятия и семинары		Компьютеры, подключенные к сети Интернет, пакет прикладных программ	
Лекции		лекционная аудитория: компьютер, проектор, экран.	
Самостоятельная работа студента		Компьютеры, подключенные к сети Интернет, пакет прикладных программ	