Парсеры .СІ и .ОU тфайлов

Подготовил студент группы КЭ-222 Рассказов Сергей Михайлович Научный руководитель: к.т.н. Кафтанников Игорь Леопольдович

Digital Twins for Materials

Технологический институт Джорджии; Surya R. Kalidindi, Michael Buzzy, Brad L. Boyce, Remi Dingreville 16.03.22г.

МАКРОУРОВЕНЬ

Физические объекты в метриках метровых, сантиметровых единиц

МИКРОУРОВЕНЬ

Сплавы, твердые растворы, органические соединения, агрегации молекул и т.п.

НАНОУРОВЕНЬ

В основном, структуры с нанометрикой,

молекулы

АТОМНЫЙ УРОВЕНЬ

Допустимо опираться на эти три уровня, если рассматриваются довольно большие объекты, так в этой статье речь идёт о газотурбинных двигателях. В случае, если речь идёт о цифровых двойниках материалов, то необходимо опускаться на более низкий уровень – атомный. При такой детализации определяются и исследуются химические связи, и силы этих связей. Свойства взаимного расположения атомов

CIF

Crystallographic Information File

СІF является последовательным файлом содержащим текстовую информацию в кодировке ASCII, длину строк не более 80 символов и другие технические ограничения. Он формируется по заранее заданным правилам, которые сформулированы и приняты International Union of Crystallography (IUCr) в 1992 году. И описаны в «A Guide to CIF for Authors.» В 2014 году приняли стандарт CIF2, в котом добавили возможность использовать Unicode и другие

<pre>_exptl_crystal_description</pre>	plate
_exptl_crystal_colour	colourless
_exptl_crystal_size_max	0.30
exptl crystal size mid	0.28
exptl crystal size min	0.10
exptl crystal density meas	
exptl crystal density diffrn	1.210
exptl crystal density method	'not measured'
exptl crystal F 000	266
exptl absorpt coefficient mu	0.089
exptl absorpt correction type	Multi-scan
exptl absorpt process details	'(DENZO-SMN;
Otwinowski & Minor, 1997)	
exptl absorpt correction T min	0.950
exptl absorpt correction T max	0.988
diffrn ambient temperature	150(1)
diffrn radiation wavelength	0.71073
diffrn radiation type	MoK\a
diffrn radiation source	'fine-focus sealed
X-ray tube'	
diffrn radiation monochromator	graphite
diffrn measurement device type	'Nonius KappaCCD'
diffrn measurement method	' f scans, and w
scans with \k offsets'	
diffrn standards decay %	0
diffrn reflns number	8456
diffrn reflns av R equivalents	0.064
diffrn reflns av sigmal/netI	0.0848
diffrn reflns limit h min	-11
diffrn reflns limit h max	11
diffrn reflns limit k min	-12
diffrn reflns limit k max	12
diffrn reflns limit 1 min	-12
diffrn reflns limit 1 max	13
diffrn reflns theta min	3.54 Te '+
diffrn reflns theta max	27.61

IN	THE	SY	MMETRIC	UNIT		5	- A1	OMS	ΙN	THE	UNII	CELL:	16
										Y/]	В		
													* * * * *
			00000000	00000	E+0(5.00	0000	0000	0000	E-01	3.264	17209
			-5.00	00000	0000	000	E-01	. 0	.000	0000	00000	00E+00	/3/.26
		0		00000	0000	000	E+0() 5.	.000	0000	00000	0E-01	-4/02
		0	-5.00	00000	0000	000	E-01	. 0	.000	0000	00000	0E+00	/4/02
			1.46	50055	5868	349	E-01	-3.	.539	9944	41315	51E-01	11.77
			-1.46	50055	5868	349	E-01	. 3	.539	9944	41315	01E-01	(1/77)
				39944		151	E-01		.460	055	58684	9E-01	-1/.77
				39944		151	E-01		.460	055	58684	9E-01	-1.77
		Н	2.58	88485	2431	130	E-01	-2	.411	L514'	75687	0E-01	/2/81
		Η	-2.58	88485	2431	130	E-01		.411	L514'	75687	0E-01	/2,81
		Η	-2.41	1514	7568	370	E-01	2.	.588	34852	24313	80E-01	-2,81
		Η	2.41	1514	7568	370	E-01		.588	34852	24313	80E-01	-2.81
		Н		36313	7425	521	E-01	3.	.563	36862	25747	9E-01	-3.83
		Н		36313	7425	521	E-01		.563	36862	25747	9E-01	-3.83
		Н	-3.56	53686	2574	179	E-01		.436	5313	74252	2 1E- 01	3.83
		Η	3.56	53686	2574	179	E-01	. 1	.436	5313'	74252	21E-01	

T = ATOM BELONGING TO THE ASYMMETRIC UNIT INFORMATION **** fort.34 **** GEOMETRY OUTPUT FILE

DIRECT L	ATTICE	VECTORS	CARTESIAN	COMPONENTS	(ANGSTROM)	
0.5565	0000000	0E+01	0.0000000	00000E+00	0.00000000000000000) E+00
0.000	0000000	0E+00	0.5565000)0000E+01	0.000000000000000) E+00
0.0000	0000000	0E+00	0.0000000)0000E+00	0.46840000000)E+01
CARTESIA	N COORD	INATES ·	- PRIMITIV	E CELL		
			* * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * * * *	
* A	MOT	Х	(ANGSTROM)	Y (.	ANGSTROM)	
			* * * * * * * * * * *	* * * * * * * * * * * *	* * * * * * * * * * * * * * * *	* * * * * * * *
	6 C	0.000	00000 <mark>00000E-</mark>	+00 2.7825	000000000E+00	1.529125
	6 C	2.782	500000000E-	+00 0.0000	00000000E+00 -:	1.529125

OUT

568506E+00

Хранение результатов расчетов

Является результатом работы программных пакетах по расчету электронной структуры материалов. Формат стал популярным из-за постоянного развития в области химии и материалов. Старые форматы уже не могут покрывать все требования современных исследований. Основным отличием от СІF файла является отсутствие правил по формированию данных, каждая программа делает это по своему, хотя общие черты конечно прослеживаются.

● Te⁺⁴ ● O⁻²

Парсинг

Результат

Результатом парсинга является структурированные данные, которые были извлечены из исходного источника информации. Эти данные могут быть представлены в различных форматах, в зависимости от того, какой тип информации вы извлекаете и какой инструмент для парсинга используете.

Источник данных

Источником парсинга может быть любой источник данных, содержащий информацию, которую вы хотите извлечь. Веб-страницы, базы данных, файлы CSV или JSON, XML-документы, файлы логов и др.

Парсинг

Парсинг – это процесс автоматизированного сбора и структурирование информации из источника при помощи программы или сервиса, для дальнейшей работы с ней, как с отдельными объектами.

Группы

Парсинг CIF

	Что ищем	Регулярное выражение
Пары «Ключ-значение»	_exptl_crystal_size_min 0.10 _exptl_crystal_density_meas ? _exptl_crystal_density_diffrn 1.210 _exptl_crystal_density_method 'not measured' _exptl_crystal_F_000 266	re.match('(_\w+)[\s\t]+(.+)'
Координаты атомов	N4 0.027(3) 0.031(3) 0.043(3) 0.017(3) 0.014(3) 0.006(2) C5 0.046(4) 0.036(4) 0.047(4) 0.019(3) 0.023(4) 0.016(3) C51 0.067(5) 0.057(5) 0.036(4) 0.023(4) 0.024(4) 0.027(4)	re.match('(^\w+)\s(\w+)\s([-]*[0- 9].[0-9]+)[(]*\d+[)]*\s([-]*[0-9].[0- 9]+)[(]*\d+[)]*\s([-]*[0-9].[0- 9]+)[(]*\d+[)]*\s*\w+'

АЛГОРИТМ

РЕЗУЛЬТАТ

Для примера был проведен эксперимент, который показал превосходство разделенной информации по сравнению с последовательной. Данные хранились в локально расположенной базе данных PostgreSQL, на твердотельном накопителе. При работе на обычном жестком диске предполагается большее преимущество. Также при большем количестве данных в базе разделение будет давать всё больший и больший эффект.

Поиск осуществлялся в группе «Chemical Data», по брутто формуле: «С34 H22 N4 O1 S1».

Количество	Время поиска	Время поиска	Во сколько раз
элементов	в полных	В	быстрее
в базе (шт.)	файлах (сек)	разделенных	
		файлах	
433	0.011000	0.001000	11,0
4753	0.101000	0.004430	22.8

Парсинг OUT

	Что ищем	Принцип поиска
Ключевые слова	urea	self.content.index('urea')
Точные координаты от ключевого слова	CRYSTAL 113 5.565 4.684 5 6 0.00000000 5.0000000 3.255838019 8 0.00000000 5.00000000 -4.028106074 7 1.462928216 -3.537071783 1.761188478 1 2.592098873 -2.407901126 2.809651119 1 1.444918067 -3.555081932 -4.036342956 OPTGEOM ATOMONLY END	<pre>object_of_research = self.content[header_start+1] spacegroup = self.content[header_start+3] params_cell_crystal = self.content[header_start+4]</pre>
Поиск таблиц	FINAL OPTIMIZED GEOMETRY1 T6 C0.0000000005.0000000003.2645720932 F6 C-5.0000000000.000000000-3.2645720933 T8 O0.0000000005.00000000-4.0225768054 F8 O-5.000000000.000000004.0225768055 T7 N1.460055586-3.5399444131.775143436	<pre>for i in range(self.find_next_end(start_variables), self.contentlen()): If re.match('\d+', self.content[i]): final_finish = i+1</pre>

Типы ОUТ файлов

OPTimization

Много итерационный расчёт при котором изменяется положение атомов друг относительно друга с целью выявления самого низкого значения энергии

Определение колебательных мод молекул и вибрационных мод в твёрдых телах, который также служит для определения вращательных и других низкочастотных мод

Other

Другие расчеты, которые занимают около 5% от всех расчётов лаборатории

HESSian матрица

По своей сути данный тип расчетов служит для подтверждения данных оптимизации. На сколько, найденное значение в самом деле является

Работа описанная в докладе осуществляется в рамках гранта

"Цифровой двойник материалов"»

«Приоритет 2030, подпроект

Лабораторией Многомасштабного моделирования многокомпонентных функциональных материалов Под руководством доктора химических наук, доцента, Барташевич Екатерины Владимировны