ЮЖНО-УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

УТВЕРЖДАЮ:

Руководитель направления

Электронный документ, подписанный ПЭП, хранится в системе электронного документооборога Юзаво-Уранского государственного университета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдан: Замышижева А. А. Пользовятель: галпуфійсаvав Дата подписання: 60 8.2 0.23

А. А. Замышляева

РАБОЧАЯ ПРОГРАММА

дисциплины 1.О.29 Компьютерная графика для направления 01.03.02 Прикладная математика и информатика уровень Бакалавриат форма обучения очная кафедра-разработчик Прикладная математика и программирование

Рабочая программа составлена в соответствии с ФГОС ВО по направлению подготовки 01.03.02 Прикладная математика и информатика, утверждённым приказом Минобрнауки от 10.01.2018 № 9

Зав.кафедрой разработчика, д.физ.-мат.н., проф.

Разработчик программы, к.хим.н., доц., доцент

Электронный документ, подписанный ПЭП, хранится в системе лектронного документооброта ЮзргУ Юзако-Уранского госуларственного унверентета СВЕДЕНИЯ О ВЛАДЕЛЬЦЕ ПЭП Кому выдик - Аспессов Е. 10. Пользователь: alekseeva А. А. Замышляева

Е. Ю. Алексеева

1. Цели и задачи дисциплины

Целью дисциплины является изучение теоретических основ интерактивной компьютерной графики и практическое освоение методов и средств синтеза, анализа и обработки графических изображений при моделировании и исследованиях математических моделей объектов искусственного интеллекта. Задачами дисциплины является: изучение методов визуального представления информации; изучение математических основ компьютерной графики и геометрического моделирования; особенностей восприятия растровых изображений; изучение методов квантования и дискретизации изображений, систем кодирования цвета, геометрических преобразований, алгоритмов двумерной и трехмерной графики; изучение, разработка и применение алгоритмических и программных решений в области системного и прикладного программного обеспечения

Краткое содержание дисциплины

Излагаются методы построения математических моделей геометрических объектов. Описаны особенности применения плоских полигонов, поверхностей второго порядка и бикубических сплайнов в качестве геометрических примитивов графических систем. Показана связь геометрического моделирования объектов с их отображением моделей искусственного интеллекта. Излагается графическая библиотека OpenGL 4.0 и возможности моделирования с ее помощью трехмерного мира.

2. Компетенции обучающегося, формируемые в результате освоения дисциплины

Планируемые результаты освоения ОП ВО (компетенции)	Планируемые результаты обучения по дисциплине
т пеанизании ангопитмов пенеция прикланцых	Знает: правила построения двумерных и трехмерных графических изображений Умеет: пользоваться современными графическими редакторами Имеет практический опыт: составления и отладки графических программ

3. Место дисциплины в структуре ОП ВО

Перечень предшествующих дисциплин, видов работ учебного плана	Перечень последующих дисциплин, видов работ
1.О.07 Технология программирования, 1.О.10 Операционные системы, 1.О.16 Алгоритмы и структуры данных, 1.О.13 Объектно-ориентированное программирование, 1.О.11 Дискретная математика, 1.О.24 Базы данных	1.О.34 Функциональное и логическое программирование

Требования к «входным» знаниям, умениям, навыкам студента, необходимым при освоении данной дисциплины и приобретенным в результате освоения предшествующих дисциплин:

Дисциплина	Требования
	Знает: методы и средства создания и
1.0.24 Force rossess	программирования баз данных Умеет: Имеет
1.О.24 Базы данных	практический опыт: проектирования, разработки
	и программирования баз данных
	Знает: фундаментальные понятия и законы
	дискретной математики Умеет: коррелировать
	прикладные задачи и классические задачи
	дискретной математики, использовать язык
1.О.11 Дискретная математика	математической логики для алгоритмического
	решения этих задач Имеет практический опыт:
	использования классических законов дискретной
	математики при алгоритмическом решении
	прикладных задач
	Знает: принципы построения, назначение,
	структуру, функции и эволюцию операционных
	систем Умеет: проводить инсталляцию,
1.О.10 Операционные системы	конфигурирование и загрузку операционных
	систем, в том числе сетевых Имеет практический
	опыт: использования сетевых технологий для
	решения прикладных задач
	Знает: структуры данных, применяемые в
	области прикладного программного обеспечения
10161	Умеет: выбирать структуры данных, адекватные
1.О.16 Алгоритмы и структуры данных	конкретным проблемным и системным задачам
	программирования, и оценивать их
	эффективность Имеет практический опыт:
	Знает: основные методы и средства разработки
	ПО, принципы представление данных в памяти
	компьютера, порядок работы операторов языка
	программирования, основные принципы
	распределения ролей в командной работе Умеет:
	выполнять разработку и отладку программ на
1.О.07 Технология программирования	языке Си, нести ответственность за свою работу
	и реализовать собственный потенциал в команде
	Имеет практический опыт: проектирования,
	кодирования и отладки разрабатываемого
	программного обеспечения, работы с
	различными системами программирования, с
	различными средами программирования
	Знает: [ПК-2.2. 3-1.] современные языки
	программирования, библиотеки и программные
	платформы для объектно-ориентированного
	программирования приложений систем
	интеллекта, методику разработки программ с
	использованием технологии объектно-
1.О.13 Объектно-ориентированное	ориентированного программирования, синтаксис
программирование	языка объектно-ориентированного
	программирования С++; устройство и принципы
	построения объектно-ориентированных
	библиотек Умеет: реализовывать программно и
	использовать на практике математические
	алгоритмы, с применением высокоуровневого
	языка программирования С++, адаптировать и

использовать шаблоны объектно-
ориентированного программирования для
решения профессиональных задач Имеет
практический опыт: разработки компьютерных
программ на языке С++, применения объектных
технологий разработки программных систем

4. Объём и виды учебной работы

Общая трудоемкость дисциплины составляет 3 з.е., 108 ч., 72,5 ч. контактной работы

Вид учебной работы	Всего часов	Распределение по семестрам в часах Номер семестра 6
Общая трудоёмкость дисциплины	108	108
Аудиторные занятия:	64	64
Лекции (Л)	32	32
Практические занятия, семинары и (или) другие виды аудиторных занятий (ПЗ)	0	0
Лабораторные работы (ЛР)	32	32
Самостоятельная работа (СРС)	35,5	35,5
Подготовка к лабораторным работам	25	25
Подготовка к экзамену	10,5	10.5
Консультации и промежуточная аттестация	8,5	8,5
Вид контроля (зачет, диф.зачет, экзамен)	-	экзамен

5. Содержание дисциплины

No		Объем аудиторных занятий по				
	Наименование разделов дисциплины	видам в часах				
раздела	-	Всего	Л	ПЗ	ЛР	
1	Классификация ПО компьютерной графики	8	4	0	4	
2	Растровые алгоритмы	8	4	0	4	
3	Компьютерная геометрия в искусственном интеллекте	20	10	0	10	
4	Представление пространственных форм	4	2	0	2	
5	Удаление невидимых линий и поверхностей	8	4	0	4	
1 n	6 Цвет как характеристика восприятия объекта искусственным интеллектом		8	0	8	

5.1. Лекции

№ лекции	№ раздела	Наименование или краткое содержание лекционного занятия	Кол- во часов
1-2	1	Классификация ПО компьютерной графики. Параметры растровых изображений. Представление цвета в компьютере. Цветовые модели. Системы управления цветом. Графические файловые форматы.	4
3-4	2	Растровые алгоритмы. Растровое представление отрезка. Алгоритм	4

		Брезенхейма. Растровая развёртка окружности. Закраска области, заданной цветом границы. Заполнение многоугольника. Методы устранения ступенчатости. Простейшие методы обработки изображений. Яркость и контраст. Масштабирование изображения. Цифровые фильтры изображений.	
5-6	3	Компьютерная геометрия в искусственном интеллекте. Двумерные преобразования. Однородные координаты. Двумерное вращение вокруг произвольной оси.	4
7-8	3	Трехмерные преобразования и проекции. Проекции.	4
9	3	Математическое описание плоских геометрических проекций .Изображение трехмерных объектов.	2
10	4	Полигональные сетки. Явное задание многоугольников. Задание многоугольников с помощью указателей в список вершин . Явное задание ребер.	2
11-12	5	Удаление невидимых линий и поверхностей . Алгоритм плавающего горизонта . Алгоритм Робертса. Определение нелицевых граней .Удаление невидимых ребер .Алгоритм, использующий z—буфер. Метод трассировки лучей (ray casting) .Алгоритмы, использующие список приоритетов. Алгоритм Варнока (Warnock) . Алгоритм Вейлера-Азертона	4
13-14	6	Методы закраски. Диффузное отражение и рассеянный свет. Зеркальное отражение .Однотонная закраска полигональной сетки. Метод Гуро. Метод Фонга .Тени .Поверхности, пропускающие свет. Детализация поверхностей. Детализация цветом.	4
15-16	6	Детализация текстурой. Цветовая модель RGB. Цветовая модель CMYK .Цветовые модели HSB и HLS .Цветовая модель YIQ. Цветовая модель HLS.	4

5.2. Практические занятия, семинары

Не предусмотрены

5.3. Лабораторные работы

№ занятия	№ раздела	Наименование или краткое содержание лабораторной работы	Кол- во часов
1-2	1	Цветовые модели. Системы управления цветом. Графические файловые форматы.	4
3-4	2	Растровое представление отрезка. Алгоритм Брезенхейма. Растровая развёртка окружности. Закраска области, заданной цветом границы. Заполнение многоугольника. Методы устранения ступенчатости. Простейшие методы обработки изображений	4
5-6	4	Компьютерная геометрия в искусственном интеллекте. Двумерные преобразования. Однородные координаты. Аффинные преобразования.	4
7-8	3	Построение трехмерных объектов.	4
9	3	Плоские геометрические проекции.	2
10	4	Полигональные сетки. Явное задание многоугольников. Задание многоугольников с помощью указателей в список вершин . Явное задание ребер.	2
11		Удаление невидимых линий и поверхностей. Алгоритм плавающего горизонта. Алгоритм Робертса. Определение нелицевых граней. Удаление невидимых ребер.	2
12	5	Алгоритм Вейлера-Азертона Удаление невидимых линий и поверхностей. Алгоритм плавающего горизонта. Алгоритм Робертса. Определение нелицевых граней. Удаление невидимых ребер.	2

13-14	6	Методы закраски. Диффузное отражение и рассеянный свет. Зеркальное отражение .Однотонная закраска полигональной сетки. Метод Гуро. Метод Фонга .	4
15-16	6	Построение трехмерных объектов с использованием текстуры и свойств материала.	4

5.4. Самостоятельная работа студента

Выполнение СРС				
Подвид СРС	Список литературы (с указанием разделов, глав, страниц) / ссылка на С		Кол- во	
	pecypc		часов	
Подготовка к лабораторным работам	ЭУМД, доп. лит. , с.23 -447	6	25	
Подготовка к экзамену	ЭУМД, осн. лит.1, с.10-260	6	10,5	

6. Фонд оценочных средств для проведения текущего контроля успеваемости, промежуточной аттестации

Контроль качества освоения образовательной программы осуществляется в соответствии с Положением о балльно-рейтинговой системе оценивания результатов учебной деятельности обучающихся.

6.1. Контрольные мероприятия (КМ)

№ KM	Се- местр	Вид контроля	Название контрольного мероприятия	Bec	Макс. балл	Порядок начисления баллов	Учи- тыва- ется в ПА
1	6	Текущий контроль	лабораторная работа №1	25	5	Работа полностью соответствует заданию - 1балл; Оформление отчета соответствует ГОСТ - 1балл; Студенту задаются 3 вопроса по исходному заданию Правильный ответ на вопрос -1 балл; неправильные ответ на вопрос -0 баллов	экзамен
2	6	Текущий контроль	лабораторная работа №2	25	5	Работа полностью соответствует заданию - 1балл; Оформление отчета соответствует ГОСТ - 1балл; Студенту задаются 3 вопроса по исходному заданию Правильный ответ на вопрос -1 балл; неправильные ответ на вопрос -0 баллов	экзамен
3	6	Текущий контроль	лабораторная работа №3	25	5	Работа полностью соответствует заданию - 1балл; Оформление отчета соответствует ГОСТ - 1балл; Студенту задаются 3 вопроса по исходному заданию	экзамен

						Правильный ответ на вопрос -1 балл; неправильные ответ на вопрос -0 баллов	
4	6	Текущий контроль	лабораторная работа №4	25	5	Работа полностью соответствует заданию - 1балл; Оформление отчета соответствует ГОСТ - 1балл; Студенту задаются 3 вопроса по исходному заданию Правильный ответ на вопрос -1 балл; неправильные ответ на вопрос -0 баллов	экзамен
5	6	Проме- жуточная аттестация	опрос по билету	ı	5	Студенту задаются 5 вопросов по исходному билету Правильный ответ на вопрос -1 балл; неправильные ответ на вопрос -0 баллов	экзамен

6.2. Процедура проведения, критерии оценивания

Вид промежуточной аттестации	Процедура проведения	Критерии оценивания
экзамен	обязательным Контрольное мероприятие промежуточной	В соответствии с пп. 2.5, 2.6 Положения

6.3. Паспорт фонда оценочных средств

Компетенции	Результаты обучения				№ KM 1 2 3 4 5			
(()) K = /	Знает: правила построения двумерных и трехмерных графических изображений		+ +	+	+	+		
ОПК-2	Умеет: пользоваться современными графическими редакторами		+ +	+	+	+		
ОПК-2	Имеет практический опыт: составления и отладки графических программ		-	I	+	+		

Типовые контрольные задания по каждому мероприятию находятся в приложениях.

7. Учебно-методическое и информационное обеспечение дисциплины

Печатная учебно-методическая документация

а) основная литература:

Не предусмотрена

б) дополнительная литература: Не предусмотрена

- в) отечественные и зарубежные журналы по дисциплине, имеющиеся в библиотеке:
 - 1. Вестник Южно-Уральского государственного университета. Серия: Вычислительная математика и информатика Юж.-Урал. гос. ун-т; ЮУрГУ журнал. Челябинск: Издательство ЮУрГУ, 2012-
- г) методические указания для студентов по освоению дисциплины:
 - 1. Куприянов Д.Ю.Использование библиотеки OpenGL. Моделирование трёхмерной сцены

из них: учебно-методическое обеспечение самостоятельной работы студента:

1. Куприянов Д.Ю.Использование библиотеки OpenGL. Моделирование трёхмерной сцены

Электронная учебно-методическая документация

№	Вид литературы	Наименование ресурса в электронной форме	Библиографическое описание
1	Основная литература	Электронно- библиотечная система издательства Лань	Программирование компьютерной графики. Современный OpenGL/ А.М. Боресков. — М.: ДМК Пресс, 2019. — 372 с. https://e.lanbook.com/m/book/131728
2	Дополнительная литература	Электронно- библиотечная система издательства Лань	Компьютерная графика: учебно-методическое пособие / А. Ю. Борисова, М. В. Царева, И. М. Гусакова, О. В. Крылова. — Москва: МИСИ – МГСУ, 2020. — 76 с. https://e.lanbook.com/book/165179
3	Дополнительная литература	Электронно- библиотечная система издательства Лань	Божко, А. Н. Компьютерная графика: учебное пособие / А. Н. Божко, Д. М. Жук, В. Б. Маничев. — Москва: МГТУ им. Н.Э. Баумана, 2007. — 392 с. https://e.lanbook.com/book/106521
4	Методические пособия для самостоятельной работы студента	Электронно- библиотечная система издательства Лань	«Мещерина, Е. В. Системы искусственного интеллекта: учебно-методическое пособие / Е. В. Мещерина. — Оренбург: ОГУ, 2019. — 96» (Мещерина, Е. В. Системы искусственного интеллекта: учебно-методическое пособие / Е. В. Мещерина. — Оренбург: ОГУ, 2019. https://e.lanbook.com/book/160008
5	Дополнительная литература	Электронно- библиотечная система издательства Лань	«Обработка изображений с помощью OpenCV / Б. Г. Глория, Д. С. Оскар, Л. Э. Хосе, С. Г. Исмаэль. — Москва : ДМК Пресс, 2016.» (Обработка изображений с помощью OpenCV / Б. Г. Глория, Д. С. Оскар, Л. Э. Хосе, С. Г. Исмаэль. — Москва : ДМК Пресс, 2016. https://e.lanbook.com/book/90116

Перечень используемого программного обеспечения:

- 1. ФГАОУ ВО "ЮУрГУ (НИУ)"-Портал "Электронный ЮУрГУ" (https://edu.susu.ru)(бессрочно)
- 2. -JUST AI Conversational Platform Ultimate (Developer)(бессрочно)

Перечень используемых профессиональных баз данных и информационных справочных систем:

Нет

8. Материально-техническое обеспечение дисциплины

Вид занятий	№ ауд.	Основное оборудование, стенды, макеты, компьютерная техника, предустановленное программное обеспечение, используемое для различных видов занятий
Практические 333		Дисплейный класс. 22 компьютера с выходом в локальную сеть и
занятия и семинары	(36)	интернет.